首页> 外文OA文献 >An Effective Multi-Population Based Hybrid Genetic Algorithm for Job Shop Scheduling Problem
【2h】

An Effective Multi-Population Based Hybrid Genetic Algorithm for Job Shop Scheduling Problem

机译:基于有效多种群的混合遗传算法求解作业车间调度问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The job shop scheduling problem is a well known practical planning problem in the manufacturing sector. We have considered the JSSP with an objective of minimizing makespan. In this paper, a multi-population based hybrid genetic algorithm is developed for solving the JSSP. The population is divided in several groups at first and the hybrid algorithm is applied to the disjoint groups. Then the migration operator is used. The proposed approach, MP-HGA, have been compared with other algorithms for job-shop scheduling and evaluated with satisfactory results on a set of JSSPs derived from classical job-shop scheduling benchmarks. We have solved 15 benchmark problems and compared results obtained with a number of algorithms established in the literature. The experimental results show that MP-HGA could gain the best known makespan in 13 out of 15 problems.
机译:车间调度问题是制造业中众所周知的实际计划问题。我们考虑了JSSP,目的是最小化制造时间。本文提出了一种基于多种群的混合遗传算法来求解JSSP。首先将总体分为几个组,然后将混合算法应用于不相交的组。然后使用迁移运算符。所提出的方法MP-HGA已与其他用于车间调度的算法进行了比较,并在从经典车间调度基准衍生的一组JSSP上获得了令人满意的结果。我们已经解决了15个基准问题,并与文献中建立的多种算法所获得的结果进行了比较。实验结果表明,MP-HGA可以在15个问题中的13个中获得最广为人知的有效期。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号